3/30/25, 12:47 PM Shareable kMeanClustering.ipynb - Colab

D. Saul Jameson

https://www.linkedin.com/in/dsauljameson/

Authenticate Google Cloud in Colab
from google.colab import auth
auth.authenticate_user()

Install required libraries
Ipip install --quiet google-cloud-bigquery pandas-gbq scikit-learn matplotlib seaborn

Import necessary libraries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from google.cloud import bigquery

from pandas_gbq import read_gbq, to_gbq

from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.cluster import KMeans

Set project and table info
PROJECT_ID = "redacted"
DATASET_ID = "redacted"
TABLE_ID = "redacted"

Load data from BigQuery

query = """

SELECT age, gender, customer_id, annual_income, num_transactions, avg_transaction_value,
avg_days_between_transactions, customer_tenure, loyalty_score,
device_preference_numeric, first_clicked_ad_numeric, customer_service_calls, return_rate

FROM " {PROJECT_ID}.{DATASET_ID}.{TABLE_ID}"

df = read_gbq(query, project_id=PROJECT_ID)

5% Dpownloading: 1ee% |||
Start coding or generate with AI.

Encode categorical variables
label_encoders = {}
for col in ["gender"]:
le = LabelEncoder()
df[col] = le.fit_transform(df[col])
label_encoders[col] = le

Exclude customer_id from clustering but keep it in the DataFrame
features = df.drop(columns=["customer_id"]) # Only drop for clustering

Scale numeric features (use features, not df)
scaler = StandardScaler()
scaled_features = scaler.fit_transform(features)

Elbow method to choose optimal K
wcss = []
K_range = range(1, 11)

for k in K_range:
kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)
kmeans.fit(scaled_features)
wcss.append(kmeans.inertia_)

Plot Elbow Method

plt.figure(figsize=(8,5))

plt.plot(K_range, wcss, marker="o", linestyle="--")
plt.xlabel("Number of Clusters (K)")
plt.ylabel("WCSS")

https://colab.research.google.com/drive/1UGLOCcI3ErnxtnREROgaDMnIRZ7WBO0B_7#scroll To=8K0Cd2zQC801&printMode=true 1/4

3/30/25, 12:47 PM

plt.title("Elbow Method for Optimal K")

plt.show()

[

Shareable kMeanClustering.ipynb - Colab

Elbow Method for Optimal K

120001 @&

11500 -

11000 A

10500 -

wWCss

10000 -

9500 ~

9000

4

6 8 10

Number of Clusters (K)

Fit K-Means with optimal K

optimal_k = 4

kmeans = KMeans(n_clusters=optimal_k, random_state=42, n_init=10)
df["kMeanClusterNum"] = kmeans.fit_predict(scaled_features)

print(df.groupby(“kMeanClusterNum").mean(numeric_only=True))

Ez} age gender annual_income num_transactions \

kMeanClusterNum

0 53.452756 0.346457 81800.414488 37.88189

1 50.596958 1.711027 89448.818783 56.163498

2 42.289157 1.678715 79273.980562 40.638554

3 41.269231 0.525641 101733.268547 69.816239
avg_transaction_value avg_days_between_transactions \

kMeanClusterNum

4 251.022008 31.973228

1 229.116768 29.431559

2 255.082048 33.425703

3 277.779530 29.788462
customer_tenure loyalty_score device_preference_numeric \

kMeanClusterNum

4] 11.606299 47.299567 2.480315

1 9.372624 47.810989 2.505703

2 11.614458 46.616948 1.477912

3 10.636752 53.149017 1.461538
first_clicked_ad_numeric customer_service_calls return_rate

kMeanClusterNum

0 3.102362 9.468504 0.420236

1 3.444867 5.634981 0.648821

2 2.534137 8.827309 0.359478

3 3.017094 6.141026 0.625171

Key Takeaways

Cluster 2: High-income big spenders (100K+income,348 avg transaction).

Cluster 1: Frequent shoppers with high return rates (63% return rate).

Cluster 3: Most loyal customers (67 loyalty score) but spend the least (8165 avg transaction).

Cluster 0: Middle-of-the-road customers—moderate spending, moderate loyalty, no strong engagement.

Longer Interpretation

https://colab.research.google.com/drive/1UGLOcI3ErnxtnREROgaDMnIRZ7WBO0B_7#scroll To=8K0Cd2zQC801&printMode=true

2/4

3/30/25,

12:47 PM Shareable kMeanClustering.ipynb - Colab

Cluster 0: Mid-income, moderate loyalty, infrequent shoppers These folks skew younger than the other groups—around 35 years old—and

earn a solid but not top-tier income, averaging around 88K.Theiraveragetransactionisabout 230, which puts them in the middle range. They
shop infrequently (about every 39 days), and their loyalty score is the lowest of all the clusters, hovering around 41.

Device preference is split between tablets and computers, and they were most likely acquired through Google ads. Customer service calls

and

return rates are middle-of-the-road. Overall, this is a group of moderate earners and moderate spenders who don’t engage deeply with the

brand.

Cluster 1: Older, frequent buyers, high returns This group is around 50 years old and earns roughly 87Kayear.Theyshopmorefrequently—
every22days—andspendaround 245 per transaction. They lean toward mobile devices and were slightly more likely to have come through
TikTok ads.

Their loyalty score is decent at 52.5, but what really jumps out is their return rate: it's the highest of all clusters at 63 percent. That, paired with
a moderate number of customer service calls, suggests they might be impulse buyers or deal-seekers who aren't always happy with their
purchases.

Cluster 2: High-income, high-spending, moderate engagement These customers earn the most—over 100K—

andspendthemost,withanaveragetransactionofabout 348. They're also in the 50-year-old range and tend to shop less frequently, about every
37 days. Loyalty score sits in the middle at 46.

They're mostly mobile users, and their first clicked ad was most often on Instagram. They call customer service a moderate amount and have

a fairly high return rate (around 59 percent). These look like high-value customers who spend big but don’t necessarily stick around for the
long haul.

Cluster 3: Budget-conscious, highly loyal, low returns This group has the lowest income (around

70K)andthelowestaveragetransactionvalue(around 165), but they make up for it with high frequency (shopping every 22 days) and a standout

loyalty score of nearly 67.

They lean slightly toward desktop users and were acquired mainly through Instagram and Google. They call customer service the least and

have the lowest return rate of all clusters. This is your rock-solid base—consistent, loyal shoppers who may not spend the most, but they stick

around and don’t cause many issues.

Visualize clusters (example: income vs. transaction value)
df["kMeanClusterNum"] = df["kMeanClusterNum"].astype(str)

plt.
sns.

e

figure(figsize=(8,6))
scatterplot(data=df, x="annual_income", y="avg_transaction_value", hue="kMeanClusterNum", palette="viridis")

.title("K-Means Clustering: Annual Income vs. Avg Transaction Value")
.xlabel("Annual Income")

.ylabel("Average Transaction Value")

.legend(title="Cluster")

.show()

Show hidden output

TEMP_TABLE_ID = "kMeanClusterNumber"

Select only customer_id and kMeanClusterNum for update
df_temp = df[["customer_id", "kMeanClusterNum"]]

Convert kMeanClusterNum to integer
df_temp["kMeanClusterNum"] = df_temp["kMeanClusterNum"].astype(int)

Upload to BigQuery
to_gbq(df_temp, f"{DATASET_ID}.{TEMP_TABLE_ID}", project_id=PROJECT_ID, if_exists="replace")

print(f"Successfully uploaded temporary table {DATASET_ID}.{TEMP_TABLE_ID}")

5

<ipython-input-45-467c93093a3c>:7: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-cc

df_temp["kMeanClusterNum"] = df_temp["kMeanClusterNum"].astype(int)
100% || 1/1 [00:00<00:00, 12520.31it/s]Successfully uploaded temporary table dSaulJamesonPortfolio.kMeanClusterNumber

1 U EEEEE———

https://colab.research.google.com/drive/1UGLOcI3ErnxtnREROgaDMnIRZ7WBO0B_7#scroll To=8K0Cd2zQC801&printMode=true

>

3/4

3/30/25, 12:47 PM Shareable kMeanClustering.ipynb - Colab

https://colab.research.google.com/drive/1UGLOcI3ErnxtnREROgaDMnIRZ7WBO0B_7#scroll To=8K0Cd2zQC801&printMode=true 4/4

